If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+10n-20=0
a = 5; b = 10; c = -20;
Δ = b2-4ac
Δ = 102-4·5·(-20)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{5}}{2*5}=\frac{-10-10\sqrt{5}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{5}}{2*5}=\frac{-10+10\sqrt{5}}{10} $
| 7(w-4$=w+2 | | (5(14)+4y)=130 | | 4p-5/3=-60 | | 17x+12=80 | | y-3y-7y+21y=0 | | p^2+18=3p | | 1/3X+35=2x | | -5/7m=-15 | | 8x+9=5x-2 | | -78=-142-o | | 8x+34+5x-4=56 | | (y^2)(2y)=0 | | 3t-7-2t=16÷2 | | 6r-(2r-3)-15=0 | | 22a=12 | | 93=30-e | | 93=180-z | | 3|10-x|-10=35 | | 19/b+6=1/9 | | 10(0.4+0.5g=4g | | y/8=3/6 | | Y=e^-8 | | 3b+b*b=18 | | 0.7a+0.8(17-a)=13 | | (x-45)+x+x(x-45)+(x-45)=540 | | 2y2=10y | | x+x+1/2x+1/2=360 | | x*((25-x^2)^1/2)=-1 | | 21z+3=-16 | | 3+5m=5m-9 | | x+x*1/x=10 | | 8x+20=6x=18 |